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The object of this paper is to study the rapidity of convergence of the Taylor
mean of the Fourier series ofj"(x) when f(x) belongs to the class Lip(a,p). We
show that it is of Jackson order provided that a suitable integrability condition is
imposed upon the function 11',(1)= Hf(x+ 1)-2j"(x)+f(x-·I)}. 1985 Academic

Press. 1m:

1. DEFINITIONS AND NOTATION

Let fE L [ - 7[, 7[ ] and be periodic with period 27[. Let the Fourier series
off be given by

x

S(x) = L em e,m\ (1.1 )

Let the nth partial sum of the series (1.1) be sn(x) = Ln_n em exp(imx).
Let (a l1k } be an infinite matrix defined by

(I - r)"+ 18"

(l-r8)"+ I
(Ir81 < 1). (1.2)
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The Taylor mean of : s,,(x)} is given by

,

T;;U x) = I a"kSk(X)
k 1\

(1.3)

whenever the series on the right of ( 1.3) is convergent for each n = 0, I, ....
The series (1.1) is said to be Taylor summable to s if

lim T;/Cr.\) = s.
n • I

For p;? I, () > 0, we let w( g; (j) and 11) g; (») denote the modulus of con­
tinuity and integral modulus of continuity, respectively, of an appropriate
function g (see [12, pp. 42, 45 J ).

All norms to be considered in this paper will be L
1
, (p;? I) norms.

Throughout the paper, norms will be taken with respect to the variahle x,
and the subscript p to L p norms will generally be omitted. The classes Lip
t1., Lip(t1., p), Lip*t1., Lip* (t1., p) (p ;? I ) will be as usual (see [4, p. 612], also
see [12, pp. 42, 45J). The class Lip(t1., p) with P =J-J reduces to Lip t1..

Throughout the paper we shall let A stand for a positive constant which
need not have the same value at each occurrence.

We shall write

(P,(r) = ~{f(x + t) - 2/(x) +/(x - t)),

1 - r exp(2it) = p exp( - 2iO),

K(n, t) = (( I - r)/ p)" f I sin [(n + I )( 0 + t) - (t(n + 1)/2)],

fIn + I I I

a,,=nln+2+~r( .

2. INTRODUCTION

( 1.4)

(1.5 )

( 1.6)

( 1.7)

The Taylor summability transform has been discussed by many authors
(see [1-10J). Boehme and Powell [I ] have considered generalizations of
the Taylor summability transform and the uniform convergence of a linear
operator associated with the generalized Taylor transform (see [I, p.29,
Theorem 4.1 J). Forbes [3 J, Ishiguro [7J, and Lorch and Newman [9J
have considered the Lebesgue constants associated with the Taylor method.
Miracle [10] has studied the Gibbs phenomenon for Taylor means. Suf­
ficient conditions for the Taylor summability of the Fourier series (1.1) has
been obtained by Holland, Sahney, and Tzimbalario [6].
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Hardy and Littlewood [4 J have stated without proof that the class of
functions Lip(:x, p) is identical with the class of functions approximable in
the LI' norm with an error O(n-'), by trigonometrical polynomials of
degree n. With a view to examining the range of values of:x and p for which
the statement of Hardy and Littlewood holds, Quade [11 J has obtained
the following, amongst other results:

THEOREM A. If the fimction f(x) can he approximated/clr each n? 1, hy
a trigonometrical po~vnomial, t,,(X), of degree n at most, such that
Ilf- t" II = O(n '), p? I, then

(i) ifO<ct.< 1,f(x)E Lip(:x, p):

(ii) if :x = 1, \\'1'(15:/) = O(e; log () 1).

Moreover there exist functions jClr which Ilf- t" II = O(n I) which do not
helong to Lip( 1, p ).

THEOREM 8. Iff(x)ELip(ct.,p), p? 1, O<ct.:(: 1, then,jor any integer n,
fIx) may he approximated in LI' hy a trigonometric polynomial, t,,(x), of
order n such that

Ilf- t" II = O(n ').

With a view to obtaining the degree of approximation of the Taylor
mean T;'(/;x) tofELip:x (O<:x< 1), Chui and Holland [2J have proved:

THEOREM c. I/f(x) E Lip ct., 0 < ct. < 1, and

unij(lrmly in x, where (1 + ct.)/ (3 + :x) :(: fJ < 1and a" is given hy (1.7), then

max IT;,(f;x)-I(x)I=O(n ').
o \" 2rr

(2.2)

They have remarked that since the Lebesgue constants for the Taylor
method diverge as n ---> CD in order to get the degree of convergence of order
/1 " fE Lip ct. is not adequate.

The object of this paper is to obtain the degree of convergence of
T;,(f: x) to fIx) in the LI' norm when fE Lip(:x, p) (Theorem 1). Since we
find that the error is of order /1' (0 < r < 1), we have obtained a subclass
of Lip( ct., p) which satisfies an integrability condition analogous to (2.1),
and for which II T;,(f: x) -f(x)11 = O(n ') (0 < ct. < 1) (see Theorem 4).
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3

We shall need the following lemmas:

LEMMA 1 (see [3J). For O<r< I, IrOI < I, p given hy (1.5), we have

(0 ~ t ~ n), (3.1 )

and

LEMMA 2 (see [10J). Let r, H he as in Lemma 1. Then

(t>O). (3.2)

(H - rt/( 1- r)} ~ At l (0 ~ t ~ n/2). (3.3 )

LEMMA 3 [5, p. 148,6.13.9]. Il h(x, t) is a function ol two variahles
defined for 0 ~ t ~ n, 0 ~ x ~ 2n, then

III h(x, t) dt Ilr ~ I Ilh(x, 1)111' dt (p> 1).

LEMMA 4 [4, Theorem 5(ii), p. 627]. Suppose that fE Lip(et, p) where
p ~ 1, 0 < et ~ 1, etp> 1. Then f is equal to a function g E Lip( et - lip) almost
everywhere.

4

Our first theorem gives an LI' estimate for the error in approximating an
fE Lip(a, p) by T~(f).

THEOREM 1. IffE Lip(et, p), 0< et ~ 1, p> 1, then

IIT~U;x)-f(x)11 =O(n '11)

for 0< f3 <~.

This theorem will be deduced from the following general theorem:

THEOREM 2. Ir.fELI' (p> 1), then,for 0< f3 < 1,

IIT~U; x)-f(x)11 = 0 (WI' GJ)) + 0 (('nlll

WI'(~;f) dt)
+ O(n ll exp( -Ani 2/1)).

(4.1 )

(4.2)
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SincefELip(e<,p), <e<~ 1, p> I, implies that It'p(b;f)=O(<5 X
) (<5>0),

and since for 0 < fJ <

nil exp( -AnI 2/i) = O(n X),

to deduce Theorem I from Theorem 2, it is enough to show that

Equation (4.4) follows from the fact that

l"(un)/iI t X Idt=O(n '11)+O(n').
""all

Proof' of' Theorem 2. Since

I .rr l f(x+t)+j'(x-t)l.
Sk(X)=-J 1 . 12 J sm((2k+l)tI2)dt,

2n () sm(t)

and since

(4.3)

(4.4 )

IJ (l~r)lJ+l l { U }JLank sin(2k + I) U = -- sin (n + I) 2(u + 0) --- ,
k~O P n+l

we have

r '. _'. -~{Ia" rlan)l! J'" }(PAt)K(n,t)dt
TIJ(j,x) f(x)- + I + . (/2)n () 'a" lan)/i sIn t

say. (4.5)

By the Minkowski inequality

II T~,(f; x) ~f(x)11 ~ II/I II + 11/211 + 11/311· (4.6)

Now, since II - rl ~ p, sin t12;;: tin when 0 < t ~ n, we have, by Lemma
3, that
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By Lemma 2 and the fact that sin nt ~ nt (0 ~ t ~ an), the integral on the
right of (4.7) does not exceed

since tl~t (O~t~an)' Hence

1111II = O(wl'(n IJ)).

Also, by Lemma 1 (( 3. 1))

K(n, t) = O(exp( -An(2
)),

we have by Lemma 3 and (4.9)

Ill, II = 0 (in WI'(tJ) e 4nl'dt)
o! h

ll
t

= O(n li exp( -Ani 2Ii)),

(4.8 )

(4.9)

(4.10)

since wI'UJ) ~ It'l'(nJ) = O( 1).
Finally, by Lemma 3 and the fact that Isin xl ~ 1 for all x, we have

( 1

'(<1,,111 l\' (t. f ) )
=0 !' '. dt .

.. Un t "
(4.11 )

On collecting the estimates from (4.8). (4.10), and (4.11 ) we get (4.2).

COROLLARY I. lifE Lip 'l., 0 < 'l. ~ I, then

T;'(/; x) -fIx) = O(n /1»

uniformly in x almost everywhere.

(0< fJ'l.< !) (4.12)

The corollary follows from Theorem 1 by taking p = 00 in (4.1) and the
fact that Lip(a, p) = Lip 'l. when p = 00.

Since fE Lip!Y. (0 <!Y. ~ 1) implies fE Lip(!Y., p) (0 <'l. ~ 1, p> 1), it is
interesting to estimate the expression on the left of (4.12) when
fE Lip('l., pl. We have the following result in that direction:
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THEOREM 3. lifE Lip(lI., p), 0 <lI. ~ 1, p> 1, lI.p> 1,

369

(4.13 )

unzfc)rmly in x almost everywhere.

Proof of Theorem 3. In the notations of Theorem 2,

(4.14)

as in (4.5).
By Lemma 4, the hypothesis fE Lip( lI., p) implies that there exists a

function g E Lip(lI. - lip) such that f= g almost everywhere. Hence. we can
conclude that almost everywhere

(4.15)

Using arguments similar to those used in estimating II (without using
Lemma 3),

II = 0 ([" I({Jxt(t) I nt dt)

= 0 (n rt'- III' dt)

almost everywhere, by (4.15) and (1.7).
In a similar manner one can modify the estimates of 12 and 13 and obtain

and

1
2
= O(n-(~ 1/1'1/1) + O(n- H liP)

=O(n-I, lipl/!) (4.16)

(4.17)

The theorem follows from (4.15), (4.16), and (4.17).

Remark. Theorem 3 is a result of the type considered by Izumi [8].

5

In this section we shall determine a subclass of the class of functions in
Lip( lI., p) for which the error in approximating a function by the Taylor
mean of its Fourier series is of Jackson order.
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Precisely, we shall prove

THEOREM 4. IIIELip(ex,p), O<'l.< I, p> I, and

where (I + ex)/(3 +'l.) 0:; f1 < ~ and a" is as in (1.7), then

II T~lf; x) -f(x)11 = O(n X).

THEOREM 5. Let fE L p (p > I) and sati~fy the conditions

H)tJ)/t" is a decreasingfunction oft in (00:; t 0:; IT)

for 0< () < I, (5.2)

and

(5.3 )

where I is as in (5.1 ) and (I + b)/( 3 + b) 0:; {3 < ~. Then

IIT~,(I;x)~f(x)II=O(wp(n \n)+O(n/iexp(~An] 2/1)). (5.4)

In order to avoid repetitions we first prove Theorem 5 and then deduce
Theorem 4 from it by appropriate reasoning.

Proof of Theorem 5. As in Theorem 2 we have

II T~U; x) -/(x)11 0:; jl/] II + 11/2 11 + 11/,11, (5.5)

where II' I], I J are as in (4.5).
In view of the estimates obtained in (4.8) and (4.10), for / 1 and I"

respectively, it is enough to show that

(5.6 )

Let us write b
ll

= (a,,)/3 and 12 as

where

2r hn (p,(t) 2/1] 2. {( I) }12. 1=- \ _.-e "rt.?1 -rJ SIn n+- t+(n+I)H dt
IT • an t 2
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and
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I h, l I (I - r)" + I II =- cp(£) -- -- ~-e
2,2 7I t" \ sin tl2 p tl2

x sin { ( n +~) t + (n + I )e}dt,

By Minkowski's inequality

where

, 'Jnrt")2( 1 --- r)~

(5.7)

fh 21{(1 r)"+1 }I11/2,2111 = a:' IICPx(t)11 t ~ ~ e "n'/2(1 r)' dt

and

III2.nll =(, IICP)t)III~-cosec(t/2)IC~rr+1 dt.

By Lemma I ((3.2)),

Since wp(t;f)/t'j is non-increasing for 0 < <> ~ 1, we have

11/2,2111 = O{ (n + 1) an-,jb~+"wp(a,,;f)}

= O(wp(lln;f))

(5.8)

(5.9)

(5.10)

since (n+l)-:fJ(4+6)-(I+b li =0(1) for j3?:(1+<»/(4+<», a condition
which is satisfied.

Since

21t - cosec tl2 = 0(£)

and (l-r)lp~ 1, we have

11/2,nII = 0 (f" tWp(t;n) = O(wp(a,,; f) n6In(2+6 1/i)

'"

(5.11 )
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by using the facts that H) I; /l/t" is non-increasing for () < c5 < 1 and that
[3? 6/(2 + c5).

Finally,

where

(5.12)

I'h" in .(1) , ,
I - - J -~'_\-) no-.21 I r)-
011- (
-.. IT un 1

_~ l'h"If!\(I+a,,) [,
le.12 - (

n ~UII t

x sin(a
n

Int) dl.

By Lemma 3-

li I 2.IIII=o(rh"IIIf!\(t)-If!\(I+an )ll e "rI":ell rl'dl)
'" Un f

by hypothesis.
By the mean value theorem

(5.13 )

for some ~ such that I < ~ < t + an < 2/. Hence the expression in the left of
(5.13) is O(t). Substituting this in Ille.d after using Lemma 3 and the fact
that H'p(t; /l/t) (0 < () < 1) does not increase, we have

ille.d = 0 (r:~' 111f!,(t + a,,)11 dt)

= °(f" H"p(r + a,,;f) dt) = 0 (It'p(2~;I;/l t' t'\ dt)
all an 0

= 0 (IV!, UJ)) 0 CIIII; ,)1 "~) = 0 (IV p UJ)),
since [3? b/( 1 + ()).

(5.14)
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Further, for an ~ t ~ hn
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we get as before

(5.15)

by Lemma 2.
Since wp(t: f)lt; (0 < 8 < I) is non-increasing, the expression on the

right of (5.15) is

(5.16)

since f3 ~ (1 + <5 )/(3 + <5).

Thus on collecting the estimates we get (5.6).
This completes the proof.

Proal of Theorem 4. Since 0 < a < I, choose <5 such that 0 < :x. < <5 < I.
Since cpAt) = O(n whenlE Lip(:x., p), we use t' in place of wp(t;f) in the
proof of Theorem 4. Now that, without choice of 8, t" - ,i t we can modify
the proof of Theorem 5 to get Theorem 4 after noting f E Lip(:x, p) means
Wp (l1, f) = 0(11') (11 > 0) and

niJexp(-An1 2ii)=0(n'),

Our next result is an analogue of Theorem 3.

THEOREM 6. IllELip(:x, p), O<:x.< I, p> I, :xp> I, and

f
,an )/' I,ll (t) - ttl (t + a )[ " "

'f'x 'f'x n e nn-/2(1 'l'dt=O(n-,+lip ),

Un t

uniformly in x where (1 +:x.)/(3 + iX):S;!1< 1and an is as in (1.7), then

T;,(f;x)-f(x)=O(n ,+I/P),

unif()rmly in x almost everywhere.

(5.17 )

(5.18)

Proof of Theorem 6 is similar to that of Theorem 3 and hence we omit it.
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COROLLAR Y 2. III E Lip x (0 < x < 1) and il the integral on the leli 01
(5.17) is 01 order n' unil()rmly in x then

1';,(/; x) -I(x) = O(n ')

uniformly in x almost everywhere.

The corollary follows from Theorem 6 by making p -> x.

6. REMARKS

1. The results obtained in this paper hold when "0" is replaced by "0"

and the classes Lip(x, p) and Lip x are replaced by Lip*(x, p) and Lip* x,
respectively.

2. We have not been able to characterize the class of functions for
which

Ii 1';,t!; x) -I(x)11 = O(n 'l).
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