Functions of Class $\operatorname{Lip}(\alpha, p)$ and Their Taylor Mean

R. N. Mohapatra*
Department of Mathematics, American University of Beirut, Beirut, Lebanon

AND

A. S. B. $\mathrm{Holland}^{\dagger}$ and B. N. Sahney ${ }^{+}$
University of Calgary, Calgary, Canada
Communicated by G. Mcinardus

Received September 27, 1984

The object of this paper is to study the rapidity of convergence of the Taylor mean of the Fourier series of $f(x)$ when $f(x)$ belongs to the class $\operatorname{Lip}(\alpha, p)$. We show that it is of Jackson order provided that a suitable integrability condition is imposed upon the function $\varphi_{, ~}(t)=\frac{1}{2}\{f(x+t)-2 f(x)+f(x-t)\}$. $\quad 1985$ Academic Press. Inc

1. Definitions and Notation

Let $f \in L[-\pi, \pi]$ and be periodic with period 2π. Let the Fourier series of f be given by

$$
\begin{equation*}
S(x)=\sum_{-\infty}^{\infty} c_{m} e^{i m x} \tag{1.1}
\end{equation*}
$$

Let the nth partial sum of the series (1.1) be $s_{n}(x)=\sum_{-n}^{n} c_{m} \exp (i m x)$.
Let $\left\{a_{n k}\right\}$ be an infinite matrix defined by

$$
\begin{equation*}
\frac{(1-r)^{n+1} \theta^{n}}{(1-r \theta)^{n+1}}=\sum_{k=0}^{\infty} a_{n k} \theta^{k} \quad(|r \theta|<1) \tag{1.2}
\end{equation*}
$$

[^0]The Taylor mean of $\left\{s_{n}(x)\right\}$ is given by

$$
\begin{equation*}
T_{n}^{r}(f ; x)=\sum_{k} a_{10} a_{m k} s_{k}(x) \tag{1.3}
\end{equation*}
$$

whenever the series on the right of (1.3) is convergent for each $n=0,1, \ldots$.
The series (1.1) is said to be Taylor summable to s if

$$
\lim _{n \rightarrow} T_{n}^{r}(f ; x)=s
$$

For $p \geqslant 1, \delta>0$, we let $w(g ; \delta)$ and $w_{p}(g ; \delta)$ denote the modulus of continuity and integral modulus of continuity, respectively, of an appropriate function g (see [12, pp. 42, 45]).

All norms to be considered in this paper will be $L_{p}(p \geqslant 1)$ norms. Throughout the paper, norms will be taken with respect to the variable x, and the subscript p to L_{p} norms will generally be omitted. The classes Lip $\alpha, \operatorname{Lip}(\alpha, p), \operatorname{Lip}^{*} \alpha, \operatorname{Lip}^{*}(\alpha, p)(p \geqslant 1)$ will be as usual (see [4, p. 612], also see $[12$, pp. 42, 45]). The class $\operatorname{Lip}(\alpha, p)$ with $p=\alpha$ reduces to $\operatorname{Lip} \alpha$.

Throughout the paper we shall let A stand for a positive constant which need not have the same value at each occurrence.

We shall write

$$
\begin{gather*}
\varphi_{x}(t)=\frac{1}{2}\{f(x+t)-2 f(x)+f(x-t)\}, \tag{1.4}\\
1-r \exp (2 i t)-\rho \exp (-2 i \theta), \tag{1.5}\\
K(n, t)=((1-r) / \rho)^{n+1} \sin [(n+1)(\theta+t)-(t(n+1) / 2)], \tag{1.6}\\
a_{n}=\pi\left\{n+\frac{1}{2}+\frac{n+1}{1-r} r\right\} \tag{1.7}
\end{gather*}
$$

2. Introduction

The Taylor summability transform has been discussed by many authors (see [1-10]). Boehme and Powell [1] have considered generalizations of the Taylor summability transform and the uniform convergence of a linear operator associated with the generalized Taylor transform (see [1, p. 29, Theorem 4.1]). Forbes [3], Ishiguro [7], and Lorch and Newman [9] have considered the Lebesgue constants associated with the Taylor method. Miracle [10] has studied the Gibbs phenomenon for Taylor means. Sufficient conditions for the Taylor summability of the Fourier series (1.1) has been obtained by Holland, Sahney, and Tzimbalario [6].

Hardy and Littlewood [4] have stated without proof that the class of functions $\operatorname{Lip}(\alpha, p)$ is identical with the class of functions approximable in the L_{p} norm with an error $O\left(n^{-x}\right)$, by trigonometrical polynomials of degree n. With a view to examining the range of values of α and p for which the statement of Hardy and Littlewood holds, Quade [11] has obtained the following, amongst other results:

Theorem A. If the function $f(x)$ can be approximated for each $n \geqslant 1$, by a trigonometrical polynomial, $t_{n}(x)$, of degree n at most, such that $\left\|f-t_{n}\right\|=O\left(n^{-\alpha}\right), p \geqslant 1$, then
(i) if $0<\alpha<1, f(x) \in \operatorname{Lip}(\alpha, p)$;
(ii) if $\alpha=1, w_{p}(\delta ; f)=O\left(\delta \log \delta{ }^{1}\right)$.

Moreover there exist functions for which $\left\|f-t_{n}\right\|=O\left(n^{\prime}\right)$ which do not belong to $\operatorname{Lip}(1, p)$.

Theorem B. If $f(x) \in \operatorname{Lip}(\alpha, p), p \geqslant 1,0<\alpha \leqslant 1$, then, for any integer n, $f(x)$ may be approximated in L_{p} by a trigonometric polynomial, $t_{n}(x)$, of order n such that

$$
\left\|f-t_{n}\right\|=O\left(n^{x}\right)
$$

With a view to obtaining the degree of approximation of the Taylor mean $T_{n}^{r}(f ; x)$ to $f \in \operatorname{Lip} x(0<\alpha<1)$, Chui and Holland [2] have proved:

Theorem C. If $f(x) \in \operatorname{Lip} \alpha, 0<\alpha<1$, and

$$
\begin{equation*}
\int_{u_{n}}^{\left(u_{n}\right)^{\mu}} \frac{\left|\varphi_{x}(t)-\varphi_{x}\left(t+a_{n}\right)\right|}{t} e^{\left.n r^{2} / 211-r\right)^{2}} d t=O\left(n^{\alpha}\right) \tag{2.1}
\end{equation*}
$$

uniformly in x, where $(1+\alpha) /(3+\alpha) \leqslant \beta<\frac{1}{2}$ and a_{n} is given by (1.7), then

$$
\begin{equation*}
\max _{0 \leqslant x \leqslant 2 \pi}\left|T_{n}^{r}(f ; x)-f(x)\right|=O\left(n^{x}\right) . \tag{2.2}
\end{equation*}
$$

They have remarked that since the Lebesgue constants for the Taylor method diverge as $n \rightarrow \infty$ in order to get the degree of convergence of order $n^{*}, f \in \operatorname{Lip} \alpha$ is not adequate.

The object of this paper is to obtain the degree of convergence of $T_{n}^{r}(f ; x)$ to $f(x)$ in the L_{p} norm when $f \in \operatorname{Lip}(x, p)$ (Theorem 1). Since we find that the error is of order $n^{* \prime}\left(0<\gamma<\frac{1}{2}\right)$, we have obtained a subclass of $\operatorname{Lip}(\alpha, p)$ which satisfies an integrability condition analogous to (2.1), and for which $\left\|T_{n}^{r}(f ; x)-f(x)\right\|=O\left(n^{x}\right)(0<\alpha<1)$ (see Theorem 4).

We shall need the following lemmas:
Lemma 1 (see [3]). For $0<r<1,|r \theta|<1, \rho$ given by (1.5), we have

$$
\begin{equation*}
((1-r) / \rho)^{\prime \prime} \leqslant \exp \left(-A n t^{2}\right) \quad(0 \leqslant t \leqslant \pi) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{((1-r) / \rho)^{n}-\exp \left(-n r^{2} / 2(1-r)^{2}\right)\right\}=O\left(n t^{4}\right) \quad(t>0) . \tag{3.2}
\end{equation*}
$$

Lemma 2 (see [10]). Let r, θ be as in Lemma 1. Then

$$
\begin{equation*}
\{\theta-r t /(1-r)\} \leqslant A t^{3} \quad(0 \leqslant t \leqslant \pi / 2) \tag{3.3}
\end{equation*}
$$

Lemma 3 [5, p. 148, 6.13.9]. If $h(x, t)$ is a function of two variables defined for $0 \leqslant t \leqslant \pi, 0 \leqslant x \leqslant 2 \pi$, then

$$
\left\|\int h(x, t) d t\right\|_{p} \leqslant \int\|h(x, t)\|_{p} d t \quad(p>1) .
$$

Lemma 4 [4, Theorem 5(ii), p. 627]. Suppose that $f \in \operatorname{Lip}(\alpha, p)$ where $p \geqslant 1,0<\alpha \leqslant 1, x p>1$. Then f is equal to a function $g \in \operatorname{Lip}(\alpha-1 / p)$ almost everywhere.

4

Our first theorem gives an L_{ρ} estimate for the error in approximating an $f \in \operatorname{Lip}(\alpha, p)$ by $T_{n}^{r}(f)$.

Theorem 1. If $f \in \operatorname{Lip}(\alpha, p), 0<\alpha \leqslant 1, p>1$, then

$$
\begin{equation*}
\left\|T_{n}^{r}(f ; x)-f(x)\right\|=O\left(n^{x \beta}\right) \tag{4.1}
\end{equation*}
$$

for $0<\beta<\frac{1}{2}$.
This theorem will be deduced from the following general theorem:
Theorem 2. If $f \in L_{p}(p>1)$, then, for $0<\beta<1$,

$$
\begin{align*}
\left\|T_{n}^{\gamma}(f ; x)-f(x)\right\|= & O\left(w_{p}\left(\frac{1}{n} ; f\right)\right)+O\left(\int_{a_{n}}^{\left(a_{n} f^{\prime}\right.} \frac{w_{p}(t ; f)}{t} d t\right) \\
& +O\left(n^{\beta} \exp \left(-A n^{1-2 \beta}\right)\right) \tag{4.2}
\end{align*}
$$

Since $f \in \operatorname{Lip}(\alpha, p), 0<\alpha \leqslant 1, p>1$, implies that $w_{p}(\delta ; f)=O\left(\delta^{x}\right)(\delta>0)$, and since for $0<\beta<\frac{1}{2}$

$$
\begin{equation*}
n^{\beta} \exp \left(-A n^{1} \quad 2 /\right)=O\left(n^{x}\right) \tag{4.3}
\end{equation*}
$$

to deduce Theorem 1 from Theorem 2, it is enough to show that

$$
\begin{equation*}
\int_{a_{n}}^{\left(u_{n}\right)^{\prime}} \frac{w_{p}(t) d t}{t}=O\left(n^{x \beta}\right) \tag{4.4}
\end{equation*}
$$

Equation (4.4) follows from the fact that

$$
\int_{u_{n}}^{\left(u_{n}\right)^{\beta}} t^{x} \quad \mathrm{I} d t=O\left(n^{x / \beta}\right)+O\left(n^{-x}\right)
$$

Proof of Theorem 2. Since

$$
s_{k}(x)=\frac{1}{2 \pi} \int_{0}^{\pi} \frac{\{f(x+t)+f(x-t)\}}{\sin (t / 2)} \sin ((2 k+1) t / 2) d t
$$

and since

$$
\sum_{k=0}^{n} a_{n k} \sin (2 k+1) u=\left(\frac{1-r}{\rho}\right)^{n+1} \sin \left[(n+1)\left\{2(u+\theta)-\frac{u}{n+1}\right\}\right]
$$

we have

$$
\begin{align*}
T_{n}^{r}(f ; x)-f(x) & =\frac{1}{\pi}\left\{\int_{0}^{u_{n}}+\int_{u_{n}}^{\left(u_{n}\right)^{\beta}}+\int_{\left(u_{n}\right)^{\beta}}^{\pi}\right\} \frac{\varphi_{x}(t) K(n, t) d t}{\sin (t / 2)} \\
& =I_{1}+I_{2}+I_{3}, \quad \text { say. } \tag{4.5}
\end{align*}
$$

By the Minkowski inequality

$$
\begin{equation*}
\left\|T_{n}^{r}(f ; x)-f(x)\right\| \leqslant\left\|I_{1}\right\|+\left\|I_{2}\right\|+\left\|I_{3}\right\| . \tag{4.6}
\end{equation*}
$$

Now, since $|1-r| \leqslant \rho, \sin t / 2 \geqslant t / \pi$ when $0<t \leqslant \pi$, we have, by Lemma 3, that

$$
\begin{equation*}
\left\|I_{1}\right\| \leqslant \int_{0}^{a_{n}} \frac{\left\|\varphi_{x}(t)\right\|}{t}\left\{\sin \left(n+\frac{1}{2}\right) t+(n+1) \theta\right\} d t \tag{4.7}
\end{equation*}
$$

By Lemma 2 and the fact that $\sin n t \leqslant n t\left(0 \leqslant t \leqslant a_{n}\right)$, the integral on the right of (4.7) does not exceed

$$
\begin{aligned}
& \int_{0}^{u_{n}} \frac{w_{p}(t ; f)}{t}\left\{\left(n+\frac{1}{2}\right) t+(n+1)\left(A t^{3}+\frac{r t}{1-r}\right)\right\} d t \\
& \quad=O\left(n \int_{0}^{a_{n}} w_{p}(t ; f) d t\right)
\end{aligned}
$$

since $t^{3} \leqslant t\left(0 \leqslant t \leqslant a_{n}\right)$. Hence

$$
\begin{equation*}
\left\|I_{1}\right\|=O\left(u_{p}\left(n^{\prime} ; f\right)\right) \tag{4.8}
\end{equation*}
$$

Also, by Lemma 1 ((3.1))

$$
\begin{equation*}
K(n, t)=O\left(\exp \left(-A n t^{2}\right)\right) \tag{4.9}
\end{equation*}
$$

we have by Lemma 3 and (4.9)

$$
\begin{align*}
\left\|I_{3}\right\| & =O\left(\int_{b_{n}}^{\pi} \frac{\omega_{p}(t ; f)}{t} e^{A m^{2}} d t\right) \\
& =O\left(n^{\beta} \exp \left(-A n^{1 \quad 2 \beta}\right)\right), \tag{4.10}
\end{align*}
$$

since $w_{p}(t ; f) \leqslant w_{p}(\pi ; f)=O(1)$.
Finally, by Lemma 3 and the fact that $|\sin x| \leqslant 1$ for all x, we have

$$
\begin{align*}
\left\|I_{2}\right\| & =O\left(\int_{u_{n}}^{\left(\left.a_{n}\right|^{k}\right.} \frac{\left\|\varphi_{x}(t)\right\|}{t} d t\right) \\
& =O\left(\int_{u_{n}}^{\left(u_{n}\right)^{k}} \frac{w_{p}(t ; f)}{t} d t\right) . \tag{4.11}
\end{align*}
$$

On collecting the estimates from (4.8), (4.10), and (4.11) we get (4.2).

Corollary 1. If $f \in \operatorname{Lip} \alpha, 0<\alpha \leqslant 1$, then

$$
\begin{equation*}
T_{n}^{r}(f ; x)-f^{\prime}(x)=O\left(n^{\beta x}\right) \quad\left(0<\beta x<\frac{1}{2}\right) \tag{4.12}
\end{equation*}
$$

uniformly in x almost everywhere.
The corollary follows from Theorem 1 by taking $p=\infty$ in (4.1) and the fact that $\operatorname{Lip}(a, p)=\operatorname{Lip} \alpha$ when $p=\infty$.

Since $f \in \operatorname{Lip} \alpha(0<\alpha \leqslant 1)$ implies $f \in \operatorname{Lip}(\alpha, p)(0<\alpha \leqslant 1, p>1)$, it is interesting to estimate the expression on the left of (4.12) when $f \in \operatorname{Lip}(\alpha, p)$. We have the following result in that direction:

Theorem 3. If $f \in \operatorname{Lip}(\alpha, p), 0<\alpha \leqslant 1, p>1, \alpha p>1$,

$$
T_{n}^{r}(f ; x)-f(x)=O\left(\begin{array}{ll}
n & \quad(x \quad 1 / p) / \beta \tag{4.13}
\end{array}\right) \quad\left(0<\beta<\frac{1}{2}\right)
$$

uniformly in x almost everywhere.
Proof of Theorem 3. In the notations of Theorem 2,

$$
\begin{equation*}
T_{n}^{r}(f ; x)-f(x)=I_{1}+I_{2}+I_{3} \tag{4.14}
\end{equation*}
$$

as in (4.5).
By Lemma 4, the hypothesis $f \in \operatorname{Lip}(\alpha, p)$ implies that there exists a function $g \in \operatorname{Lip}(\alpha-1 / p)$ such that $f=g$ almost everywhere. Hence, we can conclude that almost everywhere

$$
\begin{equation*}
\varphi_{x}(t)=O\left(t^{\alpha-1 / p}\right) \tag{4.15}
\end{equation*}
$$

Using arguments similar to those used in estimating I_{1} (without using Lemma 3),

$$
\begin{aligned}
I_{1} & =O\left(\int_{0}^{a_{n}} \frac{\left|\varphi_{x}(t)\right|}{t} n t d t\right) \\
& =O\left(n \int_{0}^{a_{n}} t^{x-1 / p} d t\right) \\
& =O\left(n^{-\alpha+1 / p}\right)
\end{aligned}
$$

almost everywhere, by (4.15) and (1.7).
In a similar manner one can modify the estimates of I_{2} and I_{3} and obtain

$$
\left.\begin{array}{rl}
I_{2} & =O\left(n^{-(x} 1 / p\right) \beta
\end{array}\right)+O\left(n^{-x+1 / p}\right), ~\left(n^{-(x-1 / p) \beta}\right)
$$

and

$$
\begin{equation*}
I_{3}=O\left(n^{\beta} \exp \left(-A n^{1-2 \beta}\right)\right)=O\left(n^{-(\alpha \cdot 1 / p) \beta}\right) \tag{4.17}
\end{equation*}
$$

The theorem follows from (4.15), (4.16), and (4.17).
Remark. Theorem 3 is a result of the type considered by Izumi [8].

In this section we shall determine a subclass of the class of functions in $\operatorname{Lip}(\alpha, p)$ for which the error in approximating a function by the Taylor mean of its Fourier series is of Jackson order.

Precisely, we shall prove
Theorem 4. If $f \in \operatorname{Lip}(\alpha, p), 0<\alpha<1, p>1$, and

$$
\begin{equation*}
\tilde{I}:=\int_{u_{n}}^{\left.\left(a_{n}\right)\right)^{2}} \frac{\left\|\varphi_{x}(t)-\varphi_{v}\left(t+a_{n}\right)\right\|}{t} e^{n r^{2} 2 \mid 1 \quad r r^{2}} d t=O\left(n^{-\alpha}\right) \tag{5.1}
\end{equation*}
$$

where $(1+\alpha) /(3+\alpha) \leqslant \beta<\frac{1}{2}$ and a_{n} is as in (1.7), then

$$
\left\|T_{n}^{r}(f ; x)-f(x)\right\|=O\left(n^{x}\right) .
$$

Theorem 5. Let $f \in L_{p}(p>1)$ and satisfy the conditions

$$
\begin{align*}
& w_{p}(t ; f) / t^{j} \text { is a decreasing function of } t \text { in }(0 \leqslant t \leqslant \pi) \\
& \text { for } 0<\delta<1 \text {, } \tag{5.2}
\end{align*}
$$

and

$$
\begin{equation*}
\tilde{I}=O\left(w_{p}\left(n^{1} ; f\right)\right) \tag{5.3}
\end{equation*}
$$

where \tilde{I} is as in (5.1) and $(1+\delta) /(3+\delta) \leqslant \beta<\frac{1}{2}$. Then

$$
\begin{equation*}
\left\|T_{n}^{r}(f ; x)-f(x)\right\|=O\left(w_{p}\left(n^{1} ; f\right)\right)+O\left(n^{\beta} \exp \left(-A n^{1 \cdot 2 \beta}\right)\right) \tag{5.4}
\end{equation*}
$$

In order to avoid repetitions we first prove Theorem 5 and then deduce Theorem 4 from it by appropriate reasoning.

Proof of Theorem 5. As in Theorem 2 we have

$$
\begin{equation*}
\left\|T_{n}^{r}(f ; x)-f(x)\right\| \leqslant\left\|I_{1}\right\|+\left\|I_{2}\right\|+\left\|I_{3}\right\|, \tag{5.5}
\end{equation*}
$$

where I_{1}, I_{2}, I_{3} are as in (4.5).
In view of the estimates obtained in (4.8) and (4.10), for I_{1} and I_{3}, respectively, it is enough to show that

$$
\begin{equation*}
\left\|I_{2}\right\|=O\left(w_{p}\left(n^{1} ; f\right)\right) \tag{5.6}
\end{equation*}
$$

Let us write $b_{n}=\left(a_{n}\right)^{\beta}$ and I_{2} as

$$
I_{2}=I_{2,1}+I_{2,2}
$$

where

$$
I_{2,1}=\frac{2}{\pi} \int_{a_{n}}^{b_{n}} \frac{\varphi_{x}(t)}{t} e^{\left.n r t^{2} / 2 t 1-r\right)^{2}} \sin \left\{\left(n+\frac{1}{2}\right) t+(n+1) \theta\right\} d t
$$

and

$$
\begin{aligned}
I_{2,2}= & \frac{1}{\pi} \int_{a_{n}}^{b_{n}} \varphi_{x}(t)\left[\frac{1}{\sin t / 2}\left(\frac{1-r}{\rho}\right)^{n+1}-\frac{1}{t / 2} e^{-n r r^{2} / 2(1-r)^{2}}\right] \\
& \times \sin \left\{\left(n+\frac{1}{2}\right) t+(n+1) \theta\right\} d t .
\end{aligned}
$$

By Minkowski's inequality

$$
\begin{equation*}
\left\|I_{2.2}\right\| \leqslant\left\|I_{2,21}\right\|+\left\|I_{2,22}\right\|, \tag{5.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\left.\left.\left\|I_{2,21}\right\|=\int_{u_{n}}^{h_{n}}\left\|\varphi_{r}(t)\right\| \frac{2}{t} \right\rvert\,\left\{\left(\frac{1-r}{\rho}\right)^{n+1}-e^{n r r^{2} / 211} r\right)^{2}\right\} \mid d t \tag{5.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|I_{2.22}\right\|=\int_{a_{n}}^{b_{n}}\left\|\varphi_{x}(t)\right\|_{i}\left|\frac{2}{t}-\operatorname{cosec}(t / 2)\right|\left(\frac{1-r}{\rho}\right)^{n+1} d t . \tag{5.9}
\end{equation*}
$$

By Lemma 1 ((3.2)),

$$
\begin{equation*}
\left\|I_{2,21}\right\|=O\left(\int_{u_{n}}^{b_{n}} \frac{w_{p}(t ; f)}{t}(n+1) t^{4} d t\right) \tag{5.10}
\end{equation*}
$$

Since $w_{p}(t ; f) / t^{\delta}$ is non-increasing for $0<\delta \leqslant 1$, we have

$$
\begin{aligned}
\left\|I_{2,21}\right\| & =O\left\{(n+1) a_{n}^{-\delta} b_{n}^{4+\delta} w_{p}\left(a_{n} ; f\right)\right\} \\
& =O\left(w_{p}(1 / n ; f)\right)
\end{aligned}
$$

since $(n+1)^{-\{\beta(4+\delta)-(1+\delta)\}}=O(1)$ for $\beta \geqslant(1+\delta) /(4+\delta)$, a condition which is satisfied.

Since

$$
2 / t-\operatorname{cosec} t / 2=O(t)
$$

and $(1-r) / \rho \leqslant 1$, we have

$$
\begin{align*}
\left\|I_{2,22}\right\| & =O\left(\int_{a_{n}}^{b_{n}} t w_{p}(t ; f)\right)=O\left(w_{p}\left(a_{n} ; f\right) n^{\delta} / n^{(2+\delta) \beta}\right) \\
& =O\left(w_{p}\left(\frac{1}{n} ; f\right)\right) \tag{5.11}
\end{align*}
$$

by using the facts that $u_{p}(t ; f) / t^{j}$ is non-increasing for $0<\delta<1$ and that $\beta \geqslant \delta /(2+\delta)$.

Finally,

$$
\begin{equation*}
I_{2,1}=I_{2.11}+I_{2,12}+I_{2,13}, \tag{5.12}
\end{equation*}
$$

where

$$
\begin{aligned}
I_{2,11}= & \frac{1}{\pi} \int_{a_{n}}^{h_{n}} \frac{\varphi_{x}(t)-\varphi_{x}\left(t+a_{n}\right)}{t} e^{n r r^{2} 2(1} r^{2} \sin \left(a_{n}^{1} \pi t\right) d t \\
I_{2,13}= & \frac{1}{\pi} \int_{a_{n}}^{t_{n}} \frac{\varphi_{x}(t)}{t} e^{n r t^{2} 211} r r^{2} \\
& \times\left[\sin \left\{\left(n+\frac{1}{2}\right) t+(n+1) \theta\right\}-\sin \left\{n+\frac{1}{2}+\frac{n+1}{1-r} r\right\} t\right] d t \\
I_{2,12}= & \frac{1}{\pi} \int_{u_{n}}^{b_{n}} \frac{\varphi_{x}\left(t+a_{n}\right)}{t}\left[\begin{array}{lll}
e^{m r^{2} 2(1)} \quad r r^{2}-e^{\left.\cdots n r t+a_{n}\right)^{2} 211} \quad r r^{2}
\end{array}\right] \\
& \times \sin \left(a_{n}^{1} \pi t\right) d t .
\end{aligned}
$$

By Lemma 3.

$$
\begin{aligned}
\left\|I_{2.11}\right\| & =O\left(\int_{d_{n}}^{b_{n}} \frac{\left\|\varphi_{x}(t)-\varphi_{x}\left(t+a_{n}\right)\right\|}{t} e^{\text {ur } r^{2} 211} \quad r r^{2} d t\right) \\
& =O\left(w_{p}\left(\frac{1}{n} ; f\right)\right),
\end{aligned}
$$

by hypothesis.
By the mean value theorem

$$
\begin{align*}
& \left.e^{\operatorname{mrt} r^{2} 211} r r^{2}-e^{\left.\operatorname{mrlt}+u_{n}\right)^{2} 2(1} \quad r\right)^{2} \\
& =n a_{n} r \check{\check{c}} \exp \left(-n r \xi^{2} / 2(1-r)^{2}\right) /(1-r)^{2}, \tag{5.13}
\end{align*}
$$

for some ξ such that $t<\xi<t+a_{n}<2 t$. Hence the expression in the left of (5.13) is $O(t)$. Substituting this in $\left\|I_{2,12}\right\|$ after using Lemma 3 and the fact that $w_{p}(t ; f) / t^{\delta}(0<\delta<1)$ does not increase, we have

$$
\begin{align*}
\left\|I_{2.12}\right\| & =O\left(\int_{a_{n}}^{b_{n}}\left\|\varphi_{x}\left(t+a_{n}\right)\right\| d t\right) \\
& =O\left(\int_{u_{n}}^{h_{n}} w_{p}\left(t+a_{n} ; f\right) d t\right)=O\left(\frac{w_{p}\left(2 a_{n} ; f\right)}{a_{n}^{\delta}} \int_{0}^{b_{n}} t^{o} d t\right) \\
& =O\left(w_{p}\left(\frac{1}{n} ; f\right)\right) O\left(\frac{1}{n^{\beta(1+\delta 1 \cdot \delta}}\right)=O\left(w_{p}\left(\frac{1}{n} ; f\right)\right), \tag{5.14}
\end{align*}
$$

since $\beta \geqslant \delta /(1+\delta)$.

Further, for $a_{n} \leqslant t \leqslant b_{n}$

$$
\sin \left\{\left(n+\frac{1}{2}\right) t+(n+1) \theta\right\}-\sin \left\{n+\frac{1}{2}+\frac{n+1}{1-r} r\right\} t=O\left((n+1)\left|\theta-\frac{r t}{1-r}\right|\right)
$$

we get as before

$$
\begin{align*}
\left\|I_{2.13}\right\| & =O\left((n+1) \int_{a_{n}}^{b_{n}} \frac{w_{p}(t ; f)}{t}\left|\theta-\frac{r t}{1-r}\right| d t\right) \\
& =O\left((n+1) \int_{a_{n}}^{b_{h}} w_{p}(t ; f) t^{2} d t\right) \tag{5.15}
\end{align*}
$$

by Lemma 2.
Since $w_{p}(t: f) / t^{\delta} \quad(0<\delta<1)$ is non-increasing, the expression on the right of (5.15) is

$$
\begin{align*}
& O\left((n+1) a_{n}{ }^{o_{p}}\left(a_{n} ; f\right) \int_{0}^{b_{n}} t^{2+\delta} d t\right\} \\
& =O\left(w_{p}\left(n^{-1} ; f\right)\right) \tag{5.16}
\end{align*}
$$

since $\beta \geqslant(1+\delta) /(3+\delta)$.
Thus on collecting the estimates we get (5.6).
This completes the proof.
Proof of Theorem 4. Since $0<\alpha<1$, choose δ such that $0<\alpha<\delta<1$. Since $\varphi_{x}(t)=O\left(t^{\alpha}\right)$ when $f \in \operatorname{Lip}(\alpha, p)$, we use t^{α} in place of $w_{p}(t ; f)$ in the proof of Theorem 4. Now that, without choice of $\delta, t^{x-\delta} \neq$ we can modify the proof of Theorem 5 to get Theorem 4 after noting $f \in \operatorname{Lip}(\alpha, p)$ means $w_{p}(\eta, f)=O\left(\eta^{\alpha}\right)(\eta>0)$ and

$$
n^{\beta} \exp \left(-A n^{1-2 \beta}\right)=O\left(n^{x}\right), \quad\left(\beta<\frac{1}{2}\right)
$$

Our next result is an analogue of Theorem 3.
Theorem 6. If $f \in \operatorname{Lip}(\alpha, p), 0<\alpha<1, p>1, \alpha p>1$, and

$$
\begin{equation*}
\int_{u_{n}}^{\left(a_{n}\right)^{\mu}} \frac{\left|\varphi_{x}(t)-\varphi_{x}\left(t+a_{n}\right)\right|}{t} e^{n r r^{2} / 2(1 \quad r)^{2}} d t=O\left(n^{-x+1 / p}\right) \tag{5.17}
\end{equation*}
$$

uniformly in x where $(1+\alpha) /(3+\alpha) \leqslant \beta<\frac{1}{2}$ and a_{n} is as in (1.7), then

$$
\begin{equation*}
T_{n}^{r}(f ; x)-f(x)=O\left(n^{x+1 / p}\right) \tag{5.18}
\end{equation*}
$$

uniformly in x almost everywhere.
Proof of Theorem 6 is similar to that of Theorem 3 and hence we omit it.

Corollary 2. If $f \in \operatorname{Lip} x(0<\alpha<1)$ and if the integral on the left of (5.17) is of order n^{α} uniformly in x then

$$
T_{n}^{r}(f ; x)-f(x)=O\left(n^{x}\right)
$$

uniformly in x almost everywhere.
The corollary follows from Theorem 6 by making $p \rightarrow \alpha$.

6. Remarks

1. The results obtained in this paper hold when " O " is replaced by "o" and the classes $\operatorname{Lip}(\alpha, p)$ and $\operatorname{Lip} \alpha$ are replaced by $\operatorname{Lip} *(\alpha, p)$ and $\operatorname{Lip}^{*} \alpha$, respectively.
2. We have not been able to characterize the class of functions for which

$$
\left\|T_{n}^{r}(f ; x)-f(x)\right\|=O\left(n^{x}\right)
$$

Referfnces

1. T. K. Boehme and R. E. Powell, The $T(f ; i)$ summability transform, J. Indian Math. Soc. 33 (1969), 21-36.
2. C. K. Chui anis A. S. B. Hollanis, On order of approximation by Euler and Taylor Means, J. Approx. Theory 39 (1983), 24-38.
3. R. L. Forbes. Lebesgue constants for regular Taylor summability, Canad. Math. Bull. 8 (1965), 797-808.
4. G. H. Hardy anid J. E. Littlewood, A convergence criterion for Fourier series, Math. Z. 28 (1928), 612-634.
5. G. H. Hardy, J. E. Littlewood, and G. Polyí. "Inequalities." Cambridge, Univ. Press, London/New York, 1967.
6. A. S. B. Holland. B. N. Sahney, and J. Tzimbalario, A criterion for Taylor summability of Fourier series, Canad. Math. Bull. 22 (1979), 345-350.
7. K. Ishiglro, The Lebesgue constants for (γ, r) summation of Fourier series, Proc. Japan Acad. 36 (1960), 470-476.
8. S. Izumi, Notes on Fourier Analysis. XXI. On the degree of approximation of the partial sums of a Fourier series, J. London Math. Soc. 25 (1950), 240-242.
9. L. Lorch and D. J. Newman, The Lebesgue constants for (γ, r) summation of Fourier series, Canad. Math. Bull. 6 (1963), 179-182.
10. C. L. Miracle, The Gibbs phenomenon for Taylor means and for $\left[F, d_{n}\right]$ means, Canad. J. Math 12 (1960), 660-673.
11. E. S. Quade. Trigonometric approximation in the mean, Duke Math. J. 3 (1937). 529-543.
12. A. Zygmund, "Trigonometric Series," Vols. I and II 2nd ed., Cambridge Univ. Press, London/New York, 1968.

[^0]: * Part of the research of this author was supported by the University of Calgary Research Grant 2880. Present address: University of Central Florida, Orlando, Florida, U.S.A.
 ${ }^{\dagger}$ Deceased.

